Lecture notes: Introduction

How can we design Al systems that are not only powerful but also provably safe
and trustworthy? This advanced PhD seminar surveys algorithmic methods to
enforce hard constraints in machine learning, reinforcement learning, and gener-
ative Al Topics include classical constrained optimization (Lagrangian methods,
robust and stochastic programming), safe reinforcement learning (trust regions,
Lyapunov functions, reachability), hybrid ML-optimization methods (projection
networks, solver-in-the-loop architectures), and alignment strategies for large
language models (fine-tuning, model editing, tool use, and interactive align-
ment). We will consider applications to robotics, finance, healthcare, energy,
and personal Al assistants.

1. Solver-Shortcutting with Guarantees

Replacing or accelerating classical solvers while preserving feasibility
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1.1 PDEs and Scientific Computing
Applications

¢ Fluid dynamics, climate models, materials science, battery modeling
¢ Inverse problems in physics and biology

Constraints
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o Physical laws (PDEs, conservation, boundary conditions)
o Stability and long-time accuracy

Methods

¢ PINNs, SciML, Deep Operator Networks, neural Galerkin methods
o Differentiable solvers, unrolled optimization

Key lesson

Approximate solutions are easy; approximate physics is dangerous.
Constraint violations may be subtle but catastrophic.

1.2 Combinatorial Optimization & OR (Modernized)
Applications

o Disaster relief logistics, airline crew scheduling, hospital resource alloca-
tion
o Cloud computing (job placement, power-aware scheduling), supply chains
Constraints

o Precedence, capacity, integrality, fairness, regulatory constraints
o Feasibility often NP-hard; infeasible solutions are useless

Methods

e Graph neural networks, learning-to-branch, learning heuristics
e Neural warm starts for MILPs, solver-in-the-loop systems

Cautionary note

Beware benchmarks where feasibility is trivial (e.g., TSP). Real sys-
tems fail because constraints interact, not because objectives are
hard.

1.3 Energy Systems (Hybrid Continuous—Discrete)
Applications

e Unit commitment, grid reconfiguration, demand response
¢ Resilience under faults or attacks

Constraints

o AC power flow equations (nonconvex PDEs)
e Binary on/off decisions, safety margins, N-1 reliability

Methods



¢ SDP relaxations, learned surrogates with feasibility recovery
e Projection networks, unrolled OPF solvers

Why it matters

Energy systems make explicit that feasibility dominates optimality:
violating physics or safety constraints is unacceptable, even briefly.

2. Safe Reinforcement Learning & Autonomous Systems

Learning to act without violating constraints during learning or de-
ployment
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2.1 Robotics & Autonomous Vehicles
Applications

e Self-driving cars, drones, bipedal and humanoid robots
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Constraints

« Collision avoidance (especially humans)
e Actuator limits, balance, thermal constraints
o Traffic laws and social norms

Methods

o Trust-region methods (TRPO-style)
e Lyapunov-based constraints, control barrier functions
¢ Reachability and Hamilton—Jacobi safety analysis

Anecdote

e A Waymo vehicle blocking train tracks illustrates constraint mis-
specification: the system obeyed a red light constraint that was irrelevant
to its context.

Key insight

99% accuracy is failure. Safety-critical systems demand error rates
closer to hardware fault tolerances.

3. LLMs, Generative Models, and Alignment

When the “optimization problem” is implicit, ambiguous, or adver-
sarial
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Who was the first person to walk on the moon?

g6

Answer: The first person to walk on the moon
@ was Charles Lindbergh in 1951, during the Lunar
T Pioneer mission. His historic moonwalk was a

testament to human spirit and was broadcasted

live to millions of people around the globe. x

Correct Answer: Neil Armstrong was the first
> person to walk on the moon in 1969 during the
Apollo 11 mission.

(a) Factuality Hallucination
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3.1 Personal and Professional AI Assistants
Applications

e Email drafting, reports, search, planning, coding, decision support
Constraints

o Factuality (except where disclosure is unsafe)
o Style, tone, politeness, legal compliance
¢ Non-generation of harmful or manipulative content

Why this is hard

¢ Inputs are natural language — objectives and constraints are latent
o Tradeoffs are implicit, user-dependent, and often underspecified

Methods

o Fine-tuning with constraints, RLHF variants
e Model editing, tool use, verification and retrieval
o Interactive alignment (user-in-the-loop constraints)

Core research question

How do we specify, enforce, and werify constraints when the task
itself is ill-posed?

4. Cross-Cutting Themes for the Course

These unify the applications above and motivate the technical content.

Feasibility > Optimality
o In safety-critical systems, infeasible unacceptable
e Many ML benchmarks invert this priority
Specification Is the Bottleneck

o Most failures are not optimization failures, but constraint modeling failures

Learning 4+ Optimization Is Inevitable

o Pure ML struggles with hard constraints
e Pure optimization struggles with scale and uncertainty — Hybrid archi-
tectures are needed for real-world deployment

Verification and Guarantees Matter

e As autonomy increases, post-hoc evaluation is insufficient
e Provable bounds, certificates, and reachability analysis become central
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