A Roadmap for Enforcing
Hard Constraints in AI Models

A Tutorial on Lagrangian and Repair Methods



The Critical Need for Hard Constraints

Standard AI/ML models are trained to minimize a
loss function, but they offer no guarantees that their
outputs will satisfy critical operational constraints.
This is a major barrier to deployment in high-stakes

domains:
e Robotics: A robot arm’s trajectory must remain Physical &
within its joint limits and avoid collisions. My(z) _.}® x - Operational
e Power Grids: Power generation schedules must e Constraints
exactly match demand to prevent blackouts. Vg)ﬂla?ﬁns
0s551D1€

e Logistics: A delivery route must respect vehicle
capacity and driver work-hour limits.

In these applications, constraint violations are not just
suboptimal; they are failures. Our goal is to bridge
the gap between Al-driven decisions and the strict
requirements of the physical world.
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Two Paths to Guaranteed Constraints

We can frame the problem of enforcing constraints as a choice between two fundamental
strategies. Both leverage classical optimization theory as a foundation.

Path 1: Pricing Constraints (Lagrangian Methods)

The Idea: Relax hard constraints and incorporate them as tunable
penalties in the training objective. We find the right “price” for each
AI Model Output constraint violation.

The Story: An economic interpretation of constraints.

Path 2: Projecting Solutions (Repair Methods)

The Idea: Allow a model to produce an unconstrained output, then
use an explicit “repair” step to project it onto the feasible set.

The Story: A geometric interpretation of feasibility.
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The Toolkit: A Refresher on Lagrangian Duality

Let’s revisit the standard constrained optimization problem:

The Primal Problem

minimize f(z)
o

subject to g;(z) <0, i=1,...,m

The Lagrangian Relaxation
We relax the hard constraints into a ‘soft’ penalty in the objective using non-negative Lagrange
multipliers A; > 0:

L(z,\) = f(z) + ) Nigi()

$=1

Key Property: For any feasible point * (a point satisfying all constraints) and any A > 0, the
Lagrangian provides a lower bound on the optimal value f(x*):

min £(z,)) < £(2*,)) = f&*) + 3 Nigi(a*) < f(z°)

This holds because g;(z*) < 0 and A; > 0, making the sum non-positive.
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Finding the Best Lower Bound: The Dual Problem

The Lagrange Dual Function

The dual function g()\) is the minimum value of the Lagrangian over the primal variable z. It is a
function of the multipliers A.

g(A) = inf L(z, A) = inf (f (z) + ) }»f:gz-(m))
=1

The Dual Problem

The dual problem is to find the multipliers A that provide the tightest possible lower bound on the primal
problem. This is always a convex optimization problem.

mameize q(\)

subjectto A >0
Solving the Dual: Subgradient Ascent

We can solve the dual problem iteratively. If z; minimizes L(z, A\x), then the constraint violations g;(xy)
form a subgradient of g(A) at Ax. We can ascend in the direction of violation:

F ke 2 e £
Ae+1 = [Ar + 8k VaL(zk, )t,tc)] = [ Ak + sk g(xk)]
— et

where s, is a step size and [-]™ denotes projection onto the non-negative orthant.
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The Standard Form and Our Foundation

We consider a general optimization problem where the decision variable x is the output
of an Al model, x = Mpy(input):

minimize T
nimj fo(z)

subject to  fi(x) <0, i=1,...,m
hi(a:):[), ’J::l,...,p

e fo(x) is the objective function we wish to minimize (e.g., tracking error, cost).
e fi(x) are the inequality constraints.
e h;(x) are the equality constraints.
The feasible set is C = {z | f;(z) < 0, h;(x) = 0}. Throughout this tutorial, we will use

the notation and concepts from Boyd & Vandenberghe’s Convex Optimization, which we
assume as a shared foundation.
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Path 1: The Lagrangian “Pricing” Strategy

The core idea of Lagrangian relaxation is to transform a constrained problem into an

unconstrained one by associating a “price” or penalty with each constraint. Let’s revisit
the Lagrangian from B&YV, Chapter 5:

L(z,\,v) +Z)ﬁf1($) +Zv1h1(:c)

e )\; > 0 and v; are the Lagrange multlpllers or dual varlables.

e We can interpret \; as the price per unit violation of the constraint f;(z) < 0.
e The goal is to find prices (A\*,v*) so that the minimizer of L(z, \*,v*) is also the
solution to our original constrained problem.

The Lagrange dual function gives the optimal value of this “priced” problem for a fixed set
of prices:

g\, v) =inf L(z, A\, v)

For any A > 0, g(\, v) provides a lower bound on the optimal value p* of the original
problem (Weak Duality).
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Application: Integrating the Lagrangian into the Learning

Objective

To apply this to an AI model My that outputs z, we can define the training loss using the Lagrangian.
The key question is how to handle the dual variables (A, v).

Strategy 1: Fixed Hyperparameter Prices

The simplest approach is to treat A and v as fixed,
user-defined hyperparameters.

L(0) = fo(Mp(z)) + X f(Mp(z)) + v h(Me(2))

e Pros: Easy to implement.

e Cons: Extremely difficult to tune the prices
A, v to achieve feasibility. No guarantee of
satisfaction.

Strategy 2: Learning the Prices via Dual
Ascent (Fioretto et al.)

A more powerful approach is to learn the prices
simultaneously with the model parameters. This
mimics the saddle-point formulation of the dual
problem. The training process becomes a two-
player game:
1. Primal Step: Update model parameters 6 to
minimize £ for fixed (A, v):
0« 0 —aVel(My(z),\v)
2. Dual Step: Update dual variables A, v to
maximize L (i.e., raise the price on violated
constraints):

Ai < [Ai + Bfi(Mo(2))] 4
V; < V; + Bhi(Mo(2))
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Lagrangian Methods: Success and Failure

When it Succeeds When it Fails (Guarantees are Lost)

e Convex Problems with Strong Duality: If the ¢ Non-Convexity and the Duality Gap: For non-
original problem is convex and satisfies a constraint convex problems, such as training a deep neural
qualification (e.g., Slater’s condition), then strong network, a non-zero duality gap (p* > d*) is
duality holds (p* = d*). In this case, finding the common. This means that even for the optimal dual
optimal dual variables (A\*,*) and then variables (A*, v*), the minimizer of the Lagrangian,
minimizing L(z, A*, v*) solves the primal problem. x;, = argmin, L(z, \*,v*), is not guaranteed to be
The method is powerful as inf, L(z,...) may be an feasible for the original problem.
easy unconstrained problem. ¢ Result: The method devolves into a sophisticated

e Provides a Bound: Weak duality always holds, penalty method. It will push solutions towards
meaning g(\, v) is always a valid lower bound on feasibility, but it does not provide a hard guarantee.
the true optimal value p*. Violations, though often small, can persist.

\/\,/\/ e
Duality Gap

*

p (p* — d* > 0)

i’ |.. .I'- | |
{ \y L/
o L7
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Path 2: The Repair ‘Projection’ Strategy

The repair method takes a different philosophical
approach:

1. Train a model My to produce a ‘best guess’
solution £ = Mp(z), ignoring the constraints. 7

2. In a separate, deterministic step, ‘repair’ by y
finding the closest point to it that lies within ’ =
the feasible set C. Il (%)

This repair step is a projection. The final,
guaranteed-feasible output z* is:

r* = [Io(Z) = argmin ||z — Z||o.

zeC
o C ={z|fi(x) <0,h;(x) = 0} is the feasible
set.
e This approach guarantees feasibility by
construction.

e The key challenge is how to train the model
My end-to-end through this projection ope-
rator.
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Application: The Differentiable Repair Layer

To enable end-to-end training, the projection operator I1o(-) must be differentiable. The
model’s loss depends on the final, projected output:

L(0) = fo(z*) = fo(Illc(Mp(z)))

To compute the gradient 0L/00, the chain rule requires the Jacobian of the projection,
ollc(Z)/0x.

How can we differentiate through "argmin ?

» The projection z* = Il¢(Z) is the solution to a convex optimization problem.

e We can use the KKT conditions that define *. For a convex set C, these conditions
implicitly define ™ as a function of Z.

e Using the Implicit Function Theorem on the KKT conditions, we can compute the

Jacobian 0x*/0z. This is particularly straightforward when the projection is a
Quadratic Program (QP).

This technique allows gradients to flow back from the final objective fo(z*) through the
repair layer to the underlying model Mjy, as demonstrated in frameworks like HardNet.
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Repair Methods: Success and Failure

When it Succeeds

 Hard Feasibility Guarantee: This is the
primary advantage. The output is always
feasible by construction, which is non-
negotiable for high-stakes applications.

« Efficient for Simple Sets: If the feasible
set C allows for an efficient projection (e.g.,
affine sets, boxes, balls, probability simplex),
the repair step is fast and its derivative is

easy to compute.

When it Fails (or is Impractical)
 Computational Cost: If C is defined by

complex constraints, solving the projection
problem at every forward pass of the network
can be prohibitively expensive.

Information Loss: The projection can be a
“violent” operation. It might move Z a large
distance, potentially discarding useful
information learned by the model and hurting
the primary objective fo. The model might
learn to rely on the projection as a crutch.

Requires Convexity: The projection I1¢(%)
is a well-defined and tractable convex
optimization problem only if the feasible set C
is itself convex. This limits applicability for
problems with non-convex constraints.
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Example Showdown: Projection onto the Probability Simplex

Problem: An AI model outputs a logit vector & € R". We want to produce a probability distribution
z that minimizes ||z — Z||5 subject to the simplex constraints C = {z |z > 0,17z = 1}.

Path 1: Lagrangian Approach

1. Form the Lagrangian:
Lz, \v) = |z - %||3 - Mz +vQTz - 1).
2. Minimize L with respect to by setting VL = 0:
ANi—V
5

3. The training process must then learn A > 0 and v
that satisfy the KKT conditions (stationarity,
primal/dual feasibility, complementarity). The
final x is not guaranteed to be exactly on the
simplex.

2@ —-2)—-A+vl=0= x;,=Z; 1

Path 2: Repair Approach

L
2

The model produces Z.
The repair layer solves the projection problem:

z* = argmingec ||z — 3.

. This is a standard Quadratic Program (QP) with

a known, efficient solution algorithm.

. The final output * is guaranteed to be a valid

probability distribution. Gradients are computed
by differentiating through the KKT solution of
the QP.
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A Traveler’s Guide: Choosing Your Path

The choice between Lagrangian and Repair methods depends on the specific problem’s

requirements.
Feature Lagrangian Methods Repair Methods
Feasibility Soft. Prone to small violations in non- Hard. Guaranteed by construction.
Guarantee convex cases.
Core Idea Economic: ‘Pricing’ constraints via dual =~ Geometric: ‘Projecting’ solutions onto

variables.

the feasible set.

Computational Cost

Solving inf, L(z, \,v) + dual updates
during training.

Solving the projection problem IIo(+)) in
every forward and backward pass.

Primary
Requirement

Differentiable objective fy and
Lagrangian.

A convex feasible set C with a tractable
and differentiable projection.

Best Suited For...

Problems where small violations are
tolerable and constraints might be non-
differentiable.

High-stakes problems requiring strict
feasibility where C is a convex set
amenable to fast projection.

B&V Foundation

Chapter 5: Duality

Chapter 8: Projection on a Set
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The Frontier: A Synthesis of Learning and Optimization

Enforcing hard constraints is not just about retrofitting classical optimization onto modern Al
It is about creating a true synthesis. The frontier of this field lies in pushing beyond these two
fundamental paths:

e Hybrid Methods: Can we use a Lagrangian penalty to guide a model’s output & to be closer
to the feasible set, thereby making the final repair projection less “violent” and more
efficient?

e Amortized Optimization: Instead of solving a projection problem from scratch every time,

can we train a separate neural network to approximate the projection operator Il¢(-) for faster
inference?

e Non-Convex Constraints: Developing methods that can provide guarantees for structured
non-convex feasible sets remains a major open challenge.
Lagrangian Approach Amortized Optimization

Repair Approach Non-Convex Constraints

The principles laid out in texts like Boyd & Vandenberghe are not relics; they are the essential
erammar for building the next generation of robust, reliable, and deployable AI systems.
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Key References

Foundation
Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Roadmap

Van Hentenryck, P. (2020). Al and optimization: A roadmap for constraint satisfaction. A/
Magazine.

Methodology Examples

e Lagrangian Methods: Fioretto, F., et al. (2020). Lagrangian Duality for Constrained
Deep Learning. AAAI Conference on Artificial Intelligence.

e Repair Methods: Vlastelica, M., et al. (2019). Differentiation of Blackbox Combinatorial
Solvers. International Conference on Learning Representations (Introduced concepts for
differentiating through solvers, relevant to HardNet).

Note: Full citations for Fioretto and HardNet papers are representative examples. Replace with the
exact papers if they differ.
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